Cross-chain asset transfer from zk rollups without additional security assumptions
Share on

ZKM has released a new research paper by Senior Cryptographer, Jeroen van de Graaf, in collaboration with the ZKM research team, further elaborating on the concepts introduced earlier this year in ZKM's Entangled Rollup litepaper.

The paper, titled 'Cross-chain asset transfer from zk rollups without additional security assumptions', details advanced mechanism designs for addressing the challenges involved in enabling trustless blockchain connectivity: https://whitepaper.zkm.io/entangled_rollup_(wp).pdf…

Blockchain ecosystems operate in isolation, with each chain maintaining an independent ledger that lacks built-in interoperability. To facilitate asset transfers across blockchains, third-party solutions known as bridges are commonly deployed, introducing additional trust assumptions that make them vulnerable to exploits and presenting a potential single point of failure. Despite numerous attempts to secure bridges, their susceptibility to attacks remains a significant limitation to achieving secure blockchain interoperability.

This new paper explores a novel approach to cross-chain asset transfers between blockchains equipped with zkRollups, utilizing the cryptographic guarantees provided by zkVMs like ZKM's zkMIPS. By applying zkRollup mechanics, we demonstrate that interoperability between chains can be achieved without the need for external trusted intermediaries. Instead, the security of the cross-chain transaction is ensured by the same cryptographic properties underpinning the zkRollup, thus preserving the security guarantees of the participating blockchains without introducing additional trust assumptions.

The paper also presents a secondary model, termed parallel rollups, which provides enhanced interoperability and addresses liquidity fragmentation by integrating multiple blockchains under a unified rollup architecture. This work contributes to ZKM's broader goal of reducing the associated complexities and insecurities of cross-chain interactions, providing mechanistic insight into future expansion of the @GOATRollup Network.

More articles
The DEEP-FRI Protocol
The FRI protocol is an interactive proof system designed to prove the low degree (degree constraint) of a polynomial. The Prover commits to a polynomial form, and the Verifier ensures that the polynomial is of low degree by sampling several points from it, performing multiple random linear combinations, and polynomial folding. This interactive proof system is particularly important in zero-knowledge proofs, as it allows the verification of the polynomial’s properties without revealing the polynomial itself.
Analysis of The Plonky2 Protocol
Plonky2 is a zkSNARK protocol based on polynomial commitment and the Plonk-based PIOP interactive proof. It focuses on achieving efficient zkSNARK through the FRI technique. The primary goal of Plonky2 is to improve the efficiency of traditional zkSNARKs in recursive zero-knowledge proof scenarios while enhancing post-quantum security. Its core concept is leveraging the FRI (Fast Reed-Solomon Interactive Oracle Proof of Proximity) to allow efficient polynomial verification and using random sampling to enhance the integrity and security of the protocol.
Cross-chain asset transfer from zk rollups without additional security assumptions

ZKM has released a new research paper by Senior Cryptographer, Jeroen van de Graaf, in collaboration with the ZKM research team, further elaborating on the concepts introduced earlier this year in ZKM's Entangled Rollup litepaper.

The paper, titled 'Cross-chain asset transfer from zk rollups without additional security assumptions', details advanced mechanism designs for addressing the challenges involved in enabling trustless blockchain connectivity: https://whitepaper.zkm.io/entangled_rollup_(wp).pdf…

Blockchain ecosystems operate in isolation, with each chain maintaining an independent ledger that lacks built-in interoperability. To facilitate asset transfers across blockchains, third-party solutions known as bridges are commonly deployed, introducing additional trust assumptions that make them vulnerable to exploits and presenting a potential single point of failure. Despite numerous attempts to secure bridges, their susceptibility to attacks remains a significant limitation to achieving secure blockchain interoperability.

This new paper explores a novel approach to cross-chain asset transfers between blockchains equipped with zkRollups, utilizing the cryptographic guarantees provided by zkVMs like ZKM's zkMIPS. By applying zkRollup mechanics, we demonstrate that interoperability between chains can be achieved without the need for external trusted intermediaries. Instead, the security of the cross-chain transaction is ensured by the same cryptographic properties underpinning the zkRollup, thus preserving the security guarantees of the participating blockchains without introducing additional trust assumptions.

The paper also presents a secondary model, termed parallel rollups, which provides enhanced interoperability and addresses liquidity fragmentation by integrating multiple blockchains under a unified rollup architecture. This work contributes to ZKM's broader goal of reducing the associated complexities and insecurities of cross-chain interactions, providing mechanistic insight into future expansion of the @GOATRollup Network.