Entangled Rollups: Multi-chain Interoperability Without Bridges
Share on

We recently introduced a new trust-minimized multi-chain Interoperability infrastructure called Entangled Rollup.

Interoperability in blockchains is often implemented using a trusted bridge, a separate centralized or partially decentralized intermediary which validates and transfers cross-chain messages.

In this work, we implement an interoperability protocol by judiciously entangling the underlying primitives under standard security assumptions of zkRollups, leveraging our state-of-the-art recursive zkVM (zkMIPS).

The Entangled Rollup protocol is trustless, and a step forward to addressing liquidity fragmentation, in addition to simplifying the user and developer experience as major adoption barriers of the multi-chain world.

"Entangled Rollups: Multi-chain Interoperability Without Bridges"

“Some works propose slightly different designs that integrate zkRollup concepts into bridges. This approach faces challenges such as the need for larger circuit sizes than rollups and reducing on-chain storage and computational overhead, which are key to the effective functionality of ZK bridges. While integrating zero-knowledge proofs (zkProofs) into bridge designs significantly enhances decentralization and security, it introduces computational challenges, primarily due to the larger circuit sizes required.

In this paper we go in a different direction by exploring the subsistence of zkRollup architectures. We propose the concept of “entangled rollups” which allows multi-chain interoperability without relying on a separate entity. This architecture addresses challenges such as liquidity fragmentation while introducing less complexity for developers and users to deploy and interact.

Entangled rollups are deployed on all blockchain infrastructures, and their states are synced through state-of-the-art recursive zero-knowledge proofs. It is worth mentioning that the vision for entangled rollups is not limited to interoperability and asset transfer as this design enables a wide range of multichain applications and protocols which can leverage access to underlying infrastructures and ecosystems.”

The full Entangled Rollup LightPaper can be found here: https://whitepaper.zkm.io/entangled_rollup_light_paper.pdf

More articles
House of ZK - Pulse Check Bytesize
Welcome to Pulse Check Bytesize, the miniature version of our regular Pulse Check industry news initiative, which is your trusted source for the latest developments, insights, and analysis in the zero-knowledge field. While Pulse Check focuses on leading research papers and major project updates, ‘Bytesize’ curates impactful discussions from industry leaders on social media and podcasts into a concise format, offering essential updates and summaries of trending topics.
zkMIPS: What “Security” Means for Our zkVM’s Proofs (Part 2)
Now that we have described the broader questions of ZK proofs security, let’s continue with Question 2. In the analysis of a two-party
Entangled Rollups: Multi-chain Interoperability Without Bridges

We recently introduced a new trust-minimized multi-chain Interoperability infrastructure called Entangled Rollup.

Interoperability in blockchains is often implemented using a trusted bridge, a separate centralized or partially decentralized intermediary which validates and transfers cross-chain messages.

In this work, we implement an interoperability protocol by judiciously entangling the underlying primitives under standard security assumptions of zkRollups, leveraging our state-of-the-art recursive zkVM (zkMIPS).

The Entangled Rollup protocol is trustless, and a step forward to addressing liquidity fragmentation, in addition to simplifying the user and developer experience as major adoption barriers of the multi-chain world.

"Entangled Rollups: Multi-chain Interoperability Without Bridges"

“Some works propose slightly different designs that integrate zkRollup concepts into bridges. This approach faces challenges such as the need for larger circuit sizes than rollups and reducing on-chain storage and computational overhead, which are key to the effective functionality of ZK bridges. While integrating zero-knowledge proofs (zkProofs) into bridge designs significantly enhances decentralization and security, it introduces computational challenges, primarily due to the larger circuit sizes required.

In this paper we go in a different direction by exploring the subsistence of zkRollup architectures. We propose the concept of “entangled rollups” which allows multi-chain interoperability without relying on a separate entity. This architecture addresses challenges such as liquidity fragmentation while introducing less complexity for developers and users to deploy and interact.

Entangled rollups are deployed on all blockchain infrastructures, and their states are synced through state-of-the-art recursive zero-knowledge proofs. It is worth mentioning that the vision for entangled rollups is not limited to interoperability and asset transfer as this design enables a wide range of multichain applications and protocols which can leverage access to underlying infrastructures and ecosystems.”

The full Entangled Rollup LightPaper can be found here: https://whitepaper.zkm.io/entangled_rollup_light_paper.pdf